Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
JAMA Ophthalmol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602673

RESUMO

Importance: Previous studies indicated that female sex might be a modifier in Stargardt disease, which is an ABCA4-associated retinopathy. Objective: To investigate whether women are overrepresented among individuals with ABCA4-associated retinopathy who are carrying at least 1 mild allele or carrying nonmild alleles. Data Sources: Literature data, data from 2 European centers, and a new study. Data from a Radboudumc database and from the Rotterdam Eye Hospital were used for exploratory hypothesis testing. Study Selection: Studies investigating the sex ratio in individuals with ABCA4-AR and data from centers that collected ABCA4 variant and sex data. The literature search was performed on February 1, 2023; data from the centers were from before 2023. Data Extraction and Synthesis: Random-effects meta-analyses were conducted to test whether the proportions of women among individuals with ABCA4-associated retinopathy with mild and nonmild variants differed from 0.5, including subgroup analyses for mild alleles. Sensitivity analyses were performed excluding data with possibly incomplete variant identification. χ2 Tests were conducted to compare the proportions of women in adult-onset autosomal non-ABCA4-associated retinopathy and adult-onset ABCA4-associated retinopathy and to investigate if women with suspected ABCA4-associated retinopathy are more likely to obtain a genetic diagnosis. Data analyses were performed from March to October 2023. Main Outcomes and Measures: Proportion of women per ABCA4-associated retinopathy group. The exploratory testing included sex ratio comparisons for individuals with ABCA4-associated retinopathy vs those with other autosomal retinopathies and for individuals with ABCA4-associated retinopathy who underwent genetic testing vs those who did not. Results: Women were significantly overrepresented in the mild variant group (proportion, 0.59; 95% CI, 0.56-0.62; P < .001) but not in the nonmild variant group (proportion, 0.50; 95% CI, 0.46-0.54; P = .89). Sensitivity analyses confirmed these results. Subgroup analyses on mild variants showed differences in the proportions of women. Furthermore, in the Radboudumc database, the proportion of adult women among individuals with ABCA4-associated retinopathy (652/1154 = 0.56) was 0.10 (95% CI, 0.05-0.15) higher than among individuals with other retinopathies (280/602 = 0.47). Conclusions and Relevance: This meta-analysis supports the likelihood that sex is a modifier in developing ABCA4-associated retinopathy for individuals with a mild ABCA4 allele. This finding may be relevant for prognosis predictions and recurrence risks for individuals with ABCA4-associated retinopathy. Future studies should further investigate whether the overrepresentation of women is caused by differences in the disease mechanism, by differences in health care-seeking behavior, or by health care discrimination between women and men with ABCA4-AR.

2.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607040

RESUMO

Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligonucleotídeos Antissenso , Humanos , Feminino , Criança , Doença de Stargardt/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Células HEK293 , Íntrons , Transportadores de Cassetes de Ligação de ATP/genética
3.
Curr Issues Mol Biol ; 46(3): 2566-2575, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534779

RESUMO

Bardet-Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient with autosomal recessive apparently non-syndromic rod-cone dystrophy (RCD). Extra-ocular findings were limited to epilepsy and dental problems. Genetic analysis with a single molecule molecular inversion probes-based panel that targets the exons and splice sites of 113 genes associated with retinitis pigmentosa and Leber congenital amaurosis revealed a homozygous rare missense variant in the BBS9 gene (c.263C>T;p.(Ser88Leu)). This variant, which affects a highly conserved amino acid, is also located in the last base of Exon 3, and predicted to be splice-altering. An in vitro minigene splice assay demonstrated that this variant leads to the partial aberrant splicing of Exon 3. Therefore, we suggest that this variant is likely hypomorphic. This is in agreement with the relatively mild phenotype observed in the patient. Hence, the findings in our study expand the phenotypic spectrum associated with BBS9 variants and indicate that variants in this gene should be considered not only in BBS patients but also in individuals with non-syndromic IRD or IRD with very mild extra-ocular manifestations.

4.
Sci Rep ; 14(1): 684, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182646

RESUMO

Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing. This emphasizes the need for therapies to restore disrupted ABCA4 splicing and halt STGD1 progression. Previously, QR-1011, an antisense oligonucleotide (AON), successfully corrected splicing abnormalities and restored normal ABCA4 protein translation in human retinal organoids carrying the prevalent disease-causing variant c.5461-10T>C in ABCA4. Here, we investigated whether QR-1011 could also correct splicing in four less common non-canonical splice site (NCSS) variants flanking ABCA4 exon 39: c.5461-8T>G, c.5461-6T>C, c.5584+5G>A and c.5584+6T>C. We administered QR-1011 and three other AONs to midigene-transfected cells and demonstrate that QR-1011 had the most pronounced effect on splicing compared to the others. Moreover, QR-1011 significantly increased full-length ABCA4 transcript levels for c.5461-8T>G and c.5584+6T>C. Splicing restoration could not be achieved in the other two variants, suggesting their more severe effect on splicing. Overall, QR-1011, initially developed for a single ABCA4 variant, exhibited potent splice correction capabilities for two additional severe NCSS variants nearby. This suggests the possibility of a broader therapeutic impact of QR-1011 extending beyond its original target and highlights the potential for treating a larger population of STGD1 patients affected by multiple severe ABCA4 variants with a single AON.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligodesoxirribonucleotídeos Antissenso , Organoides , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Éxons , Retina/citologia , Splicing de RNA/efeitos dos fármacos , Doença de Stargardt/tratamento farmacológico , Doença de Stargardt/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Organoides/efeitos dos fármacos
5.
Ophthalmology ; 131(1): 87-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598860

RESUMO

PURPOSE: Late-onset Stargardt disease is a subtype of Stargardt disease type 1 (STGD1), defined by an age of onset of 45 years or older. We describe the disease characteristics, underlying genetics, and disease progression of late-onset STGD1 and highlight the differences from geographic atrophy. DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-one patients with late-onset STGD1. METHODS: Medical files were reviewed for clinical data including age at onset, initial symptoms, and best-corrected visual acuity. A quantitative and qualitative assessment of retinal pigment epithelium (RPE) atrophy was performed on fundus autofluorescence images and OCT scans. MAIN OUTCOME MEASURES: Age at onset, genotype, visual acuity, atrophy growth rates, and loss of external limiting membrane, ellipsoid zone, and RPE. RESULTS: Median age at onset was 55.0 years (range, 45-82 years). A combination of a mild and severe variant in ATP-binding cassette subfamily A member 4 (ABCA4) was the most common genotype (n = 49 [69.0%]). The most frequent allele, c.5603A→T (p.Asn1868Ile), was present in 43 of 71 patients (60.6%). No combination of 2 severe variants was found. At first presentation, all patients have flecks. Foveal-sparing atrophy was present in 33.3% of eyes, whereas 21.1% had atrophy with foveal involvement. Extrafoveal atrophy was present in 38.9% of eyes, and no atrophy was evident in 6.7% of eyes. Time-to-event curves showed a median duration of 15.4 years (95% confidence interval, 11.1-19.6 years) from onset to foveal involvement. The median visual acuity decline was -0.03 Snellen decimal per year (interquartile range [IQR], -0.07 to 0.00 Snellen decimal; 0.03 logarithm of the minimum angle of resolution). Median atrophy growth was 0.590 mm2/year (IQR, 0.046-1.641 mm2/year) for definitely decreased autofluorescence and 0.650 mm2/year (IQR, 0.299-1.729 mm2/year) for total decreased autofluorescence. CONCLUSIONS: Late-onset STGD1 is a subtype of STGD1 with most commonly 1 severe and 1 mild ABCA4 variant. The general patient presents with typical fundus flecks and retinal atrophy in a foveal-sparing pattern with preserved central vision. Misdiagnosis as age-related macular degeneration should be avoided to prevent futile invasive treatments with potential complications. In addition, correct diagnosis lends patients with late-onset STGD1 the opportunity to participate in potentially beneficial therapeutic trials for STGD1. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Retiniana , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Stargardt , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Eletrorretinografia , Tomografia de Coerência Óptica , Atrofia , Progressão da Doença , Angiofluoresceinografia
6.
Stem Cell Res ; 73: 103252, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979432

RESUMO

Pathogenic variants in ABCA4 are associated with Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by bilateral central vision loss due to a progressive degeneration of retinal cells. An induced pluripotent stem cell (iPSC) line was generated from late-onset STGD1 patient-derived fibroblasts harboring bi-allelic ABCA4 variants by lentivirus-induced reprogramming. The obtained iPSC line (RMCGENi020-A) showed pluripotent features after the reprogramming process. The generation of this iPSC line facilitates its use to differentiate it into relevant retinal-like cell models, with the aim to adequately evaluate the effects of the ABCA4 variants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Pluripotentes Induzidas/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação , Doença de Stargardt/patologia
7.
Front Genet ; 14: 1234032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779911

RESUMO

Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.

8.
HGG Adv ; : 100237, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705246

RESUMO

The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207/520 (39.8%) naïve or unsolved cases and 70/202 (34.7%) monoallelic cases, while additional causal variants were identified in 54/136 (39.7%) of probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in STGD1 cases.

9.
Invest Ophthalmol Vis Sci ; 64(12): 33, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728905

RESUMO

Purpose: To determine the disease pathogenesis associated with the frequent ABCA4 variant c.5714+5G>A (p.[=,Glu1863Leufs*33]). Methods: Patient-derived photoreceptor precursor cells were generated to analyze the effect of c.5714+5G>A on splicing and perform a quantitative analysis of c.5714+5G>A products. Patients with c.5714+5G>A in trans with a null allele (i.e., c.5714+5G>A patients; n = 7) were compared with patients with two null alleles (i.e., double null patients; n = 11); with a special attention to the degree of RPE atrophy (area of definitely decreased autofluorescence and the degree of photoreceptor impairment (outer nuclear layer thickness and pattern electroretinography amplitude). Results: RT-PCR of mRNA from patient-derived photoreceptor precursor cells showed exon 40 and exon 39/40 deletion products, as well as the normal transcript. Quantification of products showed 52.4% normal and 47.6% mutant ABCA4 mRNA. Clinically, c.5714+5G>A patients displayed significantly better structural and functional preservation of photoreceptors (thicker outer nuclear layer, presence of tubulations, higher pattern electroretinography amplitude) than double null patients with similar degrees of RPE loss, whereas double null patients exhibited signs of extensive photoreceptor ,damage even in the areas with preserved RPE. Conclusions: The prototypical STGD1 sequence of events of primary RPE and secondary photoreceptor damage is congruous with c.5714+5G>A, but not the double null genotype, which implies different and genotype-dependent disease mechanisms. We hypothesize that the relative photoreceptor sparing in c.5714+5G>A patients results from the remaining function of the ABCA4 transporter originating from the normally spliced product, possibly by decreasing the direct bisretinoid toxicity on photoreceptor membranes.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Retina , Humanos , Alelos , Éxons/genética , Genótipo , RNA Mensageiro/genética , Transportadores de Cassetes de Ligação de ATP/genética
10.
J Transl Med ; 21(1): 546, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587475

RESUMO

BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.


Assuntos
Adenosina Trifosfatases , Retinaldeído , Humanos , Doença de Stargardt/genética , Células HEK293 , Éxons/genética , Proteínas Mutantes , Transportadores de Cassetes de Ligação de ATP/genética
11.
Hum Mol Genet ; 32(21): 3078-3089, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555651

RESUMO

Missense variants in ABCA4 constitute ~50% of causal variants in Stargardt disease (STGD1). Their pathogenicity is attributed to their direct effect on protein function, whilst their potential impact on pre-mRNA splicing disruption remains poorly understood. Interestingly, synonymous ABCA4 variants have previously been classified as 'severe' variants based on in silico analyses. Here, we systemically investigated the role of synonymous and missense variants in ABCA4 splicing by combining computational predictions and experimental assays. To identify variants of interest, we used SpliceAI to ascribe defective splice predictions on a dataset of 5579 biallelic STGD1 probands. We selected those variants with predicted delta scores for acceptor/donor gain > 0.20, and no previous reports on their effect on splicing. Fifteen ABCA4 variants were selected, 4 of which were predicted to create a new splice acceptor site and 11 to create a new splice donor site. In addition, three variants of interest with delta scores < 0.20 were included. The variants were introduced in wild-type midigenes that contained 4-12 kb of ABCA4 genomic sequence, which were subsequently expressed in HEK293T cells. By using RT-PCR and Sanger sequencing, we identified splice aberrations for 16 of 18 analyzed variants. SpliceAI correctly predicted the outcomes for 15 out of 18 variants, illustrating its reliability in predicting the impact of coding ABCA4 variants on splicing. Our findings highlight a causal role for coding ABCA4 variants in splicing aberrations, improving the severity assessment of missense and synonymous ABCA4 variants, and guiding to new treatment strategies for STGD1.


Assuntos
Degeneração Macular , Humanos , Doença de Stargardt/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Células HEK293 , Reprodutibilidade dos Testes , Mutação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Splice de RNA
12.
Sci Rep ; 13(1): 9380, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296172

RESUMO

Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Macular , Humanos , Doença de Stargardt/genética , Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Degeneração Macular/genética , Retina , Linhagem
13.
Mol Vis ; 29: 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287645

RESUMO

Purpose: This study sought to describe the phenotype frequency and genetic basis of inherited retinal diseases (IRDs) among a nationwide cohort of Israeli Jewish patients of Ethiopian ancestry. Methods: Patients' data-including demographic, clinical, and genetic information-were obtained through members of the Israeli Inherited Retinal Disease Consortium (IIRDC). Genetic analysis was performed by either Sanger sequencing for founder mutations or next-generation sequencing (targeted next-generation sequencing or whole-exome sequencing). Results: Forty-two patients (58% female) from 36 families were included, and their ages ranged from one year to 82 years. Their most common phenotypes were Stargardt disease (36%) and nonsyndromic retinitis pigmentosa (33%), while their most common mode of inheritance was autosomal recessive inheritance. Genetic diagnoses were ascertained for 72% of genetically analyzed patients. The most frequent gene involved was ABCA4. Overall, 16 distinct IRD mutations were identified, nine of which are novel. One of them, ABCA4-c.6077delT, is likely a founder mutation among the studied population. Conclusions: This study is the first to describe IRDs' phenotypic and molecular characteristics in the Ethiopian Jewish community. Most of the identified variants are rare. Our findings can help caregivers with clinical and molecular diagnosis and, we hope, enable adequate therapy in the near future.


Assuntos
Doenças Retinianas , Retinite Pigmentosa , Feminino , Humanos , Masculino , Judeus/genética , Israel/epidemiologia , Linhagem , Retina , Retinite Pigmentosa/epidemiologia , Retinite Pigmentosa/genética , Mutação/genética , Análise Mutacional de DNA , Transportadores de Cassetes de Ligação de ATP/genética
14.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36785559

RESUMO

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Assuntos
Retinite Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores de RNA , Mutação , Linhagem , Retinite Pigmentosa/diagnóstico , Sequenciamento Completo do Genoma , Proteínas da Matriz Extracelular/genética
15.
Front Cell Dev Biol ; 11: 1112270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819107

RESUMO

Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.

16.
Genes (Basel) ; 14(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672932

RESUMO

Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36).


Assuntos
Degeneração Macular , Distrofias Retinianas , Humanos , Doença de Stargardt/genética , Degeneração Macular/genética , Alelos , Distrofias Retinianas/genética , Reino Unido , Transportadores de Cassetes de Ligação de ATP/genética
17.
Ophthalmology ; 130(1): 68-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934205

RESUMO

PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.


Assuntos
Degeneração Macular , Humanos , Hibridização Genômica Comparativa , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Linhagem , Fenótipo , Transativadores/genética , Proteínas de Homeodomínio/genética
18.
Genet Med ; 25(3): 100345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524988

RESUMO

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Assuntos
Genoma Humano , Doenças Retinianas , Humanos , Estudos Retrospectivos , Genoma Humano/genética , Mapeamento Cromossômico , Análise de Sequência , Doenças Retinianas/genética , Variação Estrutural do Genoma , Proteínas do Olho/genética
19.
Cells ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552712

RESUMO

Stargardt disease is an inherited retinal disease caused by biallelic mutations in the ABCA4 gene, many of which affect ABCA4 splicing. In this study, nine antisense oligonucleotides (AONs) were designed to correct pseudoexon (PE) inclusion caused by a recurrent deep-intronic variant in ABCA4 (c.769-784C>T). First, the ability of AONs to skip the PE from the final ABCA4 mRNA transcript was assessed in two cellular models carrying the c.769-784C>T variant: a midigene assay using HEK293T cells and patient-derived fibroblasts. Based on the splicing-correcting ability of each individual AON, the three most efficacious AONs targeting independent regions of the PE were selected for a final assessment in photoreceptor precursor cells (PPCs). The final analysis in the PPC model confirmed high efficacy of AON2, -5, and -7 in promoting PE exclusion. Among the three AONs, AON2 is chosen as the lead candidate for further optimization, hereby showcasing the high potential of AONs to correct aberrant splicing events driven by deep-intronic variants.

20.
Sci Rep ; 12(1): 20815, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460718

RESUMO

Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.


Assuntos
Doenças Retinianas , Humanos , Epidemiologia Molecular , Estudos Retrospectivos , Doenças Retinianas/epidemiologia , Doenças Retinianas/genética , Retina , Itália/epidemiologia , Proteínas do Olho/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA